PLEASE CLICK ON AN AD AND HELP US TO SURVIVE

Thursday, 24 July 2014

TODAY's PROBLEM

*If k is an odd positive integer, prove that for any integer \mathbf{ n \ge 1 , 1^k + 2^k + \cdots + n^k } is divisible by \mathbf{ \frac {n(n+1)}{2} }
Solution:
We write the given expression in two ways:
\mathbf{ S= 1^k + 2^k + \cdots + n^k }
\mathbf{ S =n^k + (n-1)^k + \cdots + 1^k }
This implies
\mathbf{ 2S = (1^k + n^k ) + (2^k + (n-1)^k ) + \cdots + (n^k + 1^k) }
Since k is odd, we know \mathbf{ a^k + b^k = (a+b)(a^{k-1} - a^{k-2} b + \cdots + b^{k-1}) } , that is \mathbf{ a+b}divides \mathbf{a^k + b^k }
Applying this to \mathbf{ 2S = (1^k + n^k ) + (2^k + (n-1)^k ) + \cdots + (n^k + 1^k) }  we have (n+1) divides \mathbf{ 1^k + n^k }  , \mathbf{ (2 + n-1) =(n+1) } divides \mathbf{(2^k + (n-1)^k)} and so on. Hence we can take n+1 common from each bracket, leading us to the following expression:
\mathbf{ 2S = (n+1)\times(\text{some constant}) \implies S = \frac{(n+1)}{2} \times(\text{some constant}) } . This implies \mathbf{ \frac{(n+1)}{2} }divides S if n+1 is even, other wise n+1 divides S.
Now we show n (or n/2) divides S (when is odd or even respectively). To show this we write
S= \mathbf{ 1^k + 2^k + \cdots + n^k }
\mathbf{ S =n^k + (n-1)^k + \cdots + 1^k }
Again \mathbf{ 2S =n^k + (1^k+ (n-1)^k)  + (2^k + (n-2)^k) \cdots + ((n-1)^k + 1^k) + n^k }
Since k is odd n divides \mathbf{ a^k + (n-a)^k } for all a from 1 to n. Hence we can take n as common and have:
\mathbf{ 2S = (n)\times(\text{some constant}) \implies S = \frac{(n)}{2} \times(\text{some constant}) } . This implies \mathbf{ \frac{(n)}{2} } divides S if n is even, other wise n divides S.
Now gcd of (n, n+1) = 1. Hence \mathbf{ \frac{n(n+1)}{2} } divides S.
Proved

No comments:

Post a Comment