PLEASE CLICK ON AN AD AND HELP US TO SURVIVE

Tuesday, 22 July 2014

I.S.I. B.STAT ENTRANCE SUBJECTIVE 2005

  1. Let a,b and c be the sides of a right angled triangle. Let \mathbf{\theta }  be the smallest angle of this triangle. If \mathbf{ \frac{1}{a}, \frac{1}{b} }  and \mathbf{ \frac{1}{c} } are also the sides of a right angled triangle then show that \mathbf{ \sin\theta=\frac{\sqrt{5}-1}{2}}
  2. Let \mathbf{f(x)=\int_0^1 |t-x|t \, dt } for all real x. Sketch the graph of f(x). What is the minimum value of f(x)?
  3. Let f be a function defined on \mathbf{ \{(i,j): i,j \in \mathbb{N}\} }  satisfying
    1. \mathbf{ f(i,i+1)=\frac{1}{3} }  for all i
    2. \mathbf{ f(i,j)=f(i,k)+f(k,j)-2f(i,k)f(k,j) }  for all k such that i <k<j.
      Find the value of f(1,100).
  4. Find all real solutions of the equation \mathbf{ \sin^{5}x+\cos^{3}x=1 } .
  5.  Consider an acute angled triangle PQR such that C,I and O are the circumcentre, incentre and orthocentre respectively. Suppose \mathbf{ \angle QCR, \angle QIR } and \mathbf{ \angle QOR } , measured in degrees, are \mathbf{ \alpha, \beta and \gamma }  respectively. Show that \mathbf{ \frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma} }  > \mathbf{ \frac{1}{45} }
  6. Let f be a function defined on \mathbf{ (0, \infty ) } as follows: \mathbf{ f(x)=x+\frac1x }  . Let h be a function defined for all \mathbf{ x \in (0,1) }  as \mathbf{h(x)=\frac{x^4}{(1-x)^6} }. Suppose that g(x)=f(h(x)) for all \mathbf{x \in (0,1)}.
    1. Show that h is a strictly increasing function.
    2. Show that there exists a real number \mathbf{x_0 \in (0,1)} such that g is strictly decreasing in the interval \mathbf{ (0,x_0] }  and strictly increasing in the interval \mathbf{[x_0,1)}.
  7. For integers \mathbf{ m,n\geq 1 }, Let \mathbf{ A_{m,n} , B_{m,n} } and \mathbf{ C_{m,n}} denote the following sets:
    \mathbf{A_{m,n}=\{(\alpha _1,\alpha _2,\ldots,\alpha _m) \colon 1\leq \alpha _1\leq \alpha_2 \leq \ldots \leq \alpha_m\leq n\}} given that \mathbf{\alpha _i \in \mathbb{Z}} for all i
    \mathbf{B_{m,n}=\{(\alpha _1,\alpha _2,\ldots ,\alpha _m) \colon \alpha _1+\alpha _2+\ldots + \alpha _m=n\}} given that \mathbf{\alpha _i \geq 0} and \mathbf{\alpha_ i\in \mathbb{Z}}for all i
    \mathbf{C_{m,n}=\{(\alpha _1,\alpha _2,\ldots,\alpha _m)\colon 1\leq \alpha _1 \alpha_2 \ldots; \alpha_m\leq n\}} given that \mathbf{\alpha _i \in \mathbb{Z}} for all i
    1. Define a one-one onto map from \mathbf{A_{m,n}} onto \mathbf{B_{m+1,n-1}}.
    2. Define a one-one onto map from \mathbf{A_{m,n}} onto \mathbf{C_{m,n+m-1}}.
    3. Find the number of elements of the sets \mathbf{A_{m,n}} and \mathbf{B_{m,n}}.
  8. A function f(n) is defined on the set of positive integers is said to be multiplicative if f(mn)=f(m)f(n) whenever m and n have no common factors greater than 1. Are the following functions multiplicative? Justify your answer.
    1. \mathbf{ g(n)=5^k } where k is the number of distinct primes which divide n.
    2. \mathbf{ h(n)=\begin{cases}0 &\text{if}\ n\ \text{is divisible by}\ k^2\ \text{for some integer}\ k>1\\ 1 &\text{otherwise}\end{cases} }
  9. Suppose that to every point of the plane a colour, either red or blue, is associated.
    1. Show that if there is no equilateral triangle with all vertices of the same colour then there must exist three points A,B and C of the same colour such that B is the midpoint of AC.
    2. Show that there must be an equilateral triangle with all vertices of the same colour.
  10. Let ABC be a triangle. Take n point lying on the side AB (different from A and B) and connect all of them by straight lines to the vertex C. Similarly, take n points on the side AC and connect them to B. Into how many regions is the triangle ABC partitioned by these lines? Further, take n points on the side BC also and join them with A. Assume that no three straight lines meet at a point other than A,B and C. Into how many regions is the triangle ABC partitioned now?

No comments:

Post a Comment